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ABSTRACT

This paper examines the effect of fiber and interfacial layer morphologies on thermal stress
fields in metal matrix composites (MMCs). A micromechanics model based on an arbitrarily lay-
ered concentric cylinder configuration is used to calculate thermal stress fields in MMCs sub-
jected to spatially uniform temperature changes. The fiber is modelled as a layered material with
isotropic or orthotropic, elastic layers whereas the surrounding matrix, including interfacial
layers, is treated as a strain-hardening, elastoplastic, von Mises solid with temperature-dependent
parameters. The solution to the boundary-value problem of an arbitrarily layered concentric
cylinder under the prescribed thermal loading is obtained using the local/global stiffness matrix
formulation originally developed for stress analysis of multilayered elastic media. Examples are
provided that illustrate how the morphology of the SCS6 silicon carbide fiber and the use of
multiple compliant layers at the fiber/matrix interface affect the evolution of residual stresses in
SiC/Ti composites during fabrication cool-down.

INTRODUCTION

Modelling the thermal response of metal matrix composites continues to be an active and

important area of research in composite mechanics. This is motivated, in large part, by current

efforts to develop a new generation of propulsion engines and structural components for use in a

high-speed civil transport for the next century. Metal matrix composites are viable candidates for

such applications because of their potentially superior properties at elevated temperatures. Large

temperature changes however, either due to processing or actual in-service exposure, lead to

high internal thermal stresses caused by a large mismatch in the thermal expansion coefficients

of the fiber and matrix phases. These thermal stresses can be sufficiently large to yield the

matrix during the fabrication process and/or subsequent service, altering the initial yield surfaces

and subsequent hardening response [1,2]. Radial cracking of the matrix at the fiber/matrix inter-

face caused by circumferential stresses induced during fabrication cool-down also has been
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observed in certain types of material systems such as silicon carbide/titanium aluminide compo-

sites (SiC/Ti-Al) [3].

In addition to radial cracking, longitudinal and circumferential cracks at the fiber/matrix

interface also are a source of concern [4,5]. The longitudinal cracks can be particularly detrimen-

tal as they may result in fiber fractures, directly affecting the composite's strength. The interfa-

cial cracks or debonds, observed in MMCs such as SiC/Ti in the presence of relatively low

transverse stresses, can enhance matrix plasticity, leading to large plastic strains under biaxial

loading and thus potential loss of structural stability [6,7].

A number of micromechanical approaches have been employed to model the thermal

response of metal matrix composites in order to understand the influence of the constituent pro-

perties on the evolution of thermal stresses and on the overall effective response. These range

from simple models utilizing combinations of the Reuss and Voigt hypotheses for the state of

stress and strain in the fiber and matrix phases, and composite cylinder models, to periodic fiber

array models based on approximate or rigorous geometrical and analytical assumptions [8]. In

the majority of these approaches, the fiber is treated as homogeneous, elastic and isotropic or

transversely isotropic.

Most recently, microstructures of different types of fibers used in advanced composites

have been taken into account in modelling the thermal response. Avery and Herakovich [9], for

instance, have investigated the evolution of residual stresses in polymeric matrix composites

with radially and circumferentially orthotropic, homogeneous, graphite fibers using the compo-

site cylinder assemblage model. Warwick and Clyne [10] modelled the SiC fiber as a two and

three-layered microstructure with isotropic and transversely isotropic sublayers in determining

the residual stresses in SIC/`Ti composites using a similar methodology as that employed by

Avery and Herakovich. In the above references, the matrix was treated as elastic with

temperature-independent properties.

The work by DiCarlo [ 11 ], Wawner [ 12], Lerch et al. [ 13], and others indicates that certain

types of silicon carbide fibers used in SIC/Ti composites, such as the SCS6 fiber, consist of at

least five concentric isotropic and orthotropic layers, as illustrated in Figure 1. The core of the

fiber is carbon surrounded by a thin layer of pyrolytic graphite. This is followed by layers of

short-grained and long-grained SIC material encased in an external carbon-rich coating. (We

note that a recent microstructural investigation of the SCS6 fiber conducted by Ning and Pirouz

[14] indicates the presence of four distinct SiC regions). The external carbon coating itself is

composed of sublayers with different proportions of atomic elements. In order to be able to

model such fiber microstructures, Sutcu [15] developed a recursive concentric cylinder model

for the thermomechanical response of composites, and used it to determine the thermal stresses

2



in a SCS6 SiC/Ti-A1 system. The analysis was conducted assuming elastic, temperature-

independent properties of the phases.

Still another microstructural detail that most recently has been incorporated into various

micromechanical models is the interfacial layer between the fiber and matrix phases. Such a

layer can arise naturally due to a chemical reaction at the fiber/matrix interface, or is deliberately

introduced to reduce residual stresses induced during the fabrication cool-down. In the latter

instance, the idea is to taylor the geometry, thermal and elastoplastic properties of the interfacial

layer in a way that reduces or "smooths out" the apparent thermal expansion mismatch between

the fiber and matrix phases. The utility of this concept has been investigated by Arnold and co-

workers [16,17]. Using the composite cylinder micromechanics model and the finite-element

approach, these authors studied the evolution of residual thermal stresses in SiC/T1 3 Al systems

for different combinations of thermoelastoplastic properties of an interfacial layer. The feasibil-

ity of using a compliant or compensating layer in reducing residual stresses at the fiber/matrix

interface was demonstrated, and the important parameters that govern the evolution of residual

stresses in the presence of such a layer were identified.

In this paper, an analytical solution to a micromechanics model for the thermoplastic

response of metal matrix composites is presented that is capable of efficiently accommodating

various morphologies of layered fibers, such as silicon carbide, and different architectures of

interfacial layers. The solution is constructed in a general manner that allows consideration of

arbitrary fiber or interfacial layer configurations without the need to resolve the problem for a

particular material system. In addition, the solution is extremely well suited for computer imple-

mentation. The presented analytical solution thus facilitates not only efficient parametric studies

necessary in the course of developing new composite materials, but also design of engineered

interfaces for improved performance. Further, the presented solution can readily be incorporated

into an optimization algorithm in order to efficiently identify optimal configurations or morpho-

logies for given applications.

The micromechanics model is based on the concentric cylinder assemblage consisting of an

arbitrary number of elastic or elastoplastic sublayers with isotropic or orthotropic, temperature-

dependent properties. For axisymmetric thermal loading, this model yields realistic distributions

of stress and displacement fields in the individual phases. An analytical solution to the thermal

boundary-value problem of such a composite cylinder is obtained using the local/global stiff-

ness matrix formulation originally developed by Buffer [ 18] for analyzing the response of mul-

tilayered, isotropic, elastic media. The application of this technique to problems dealing with the

elastic response of composite materials and structures has been outlined by Pindera [19]. Der-

stine and Pindera [20] used the method to solve the problem of an arbitrarily laminated
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graphite/epoxy tube under axisymmetric loading using the endochronic theory for the nonlinear

response of the individual plies. Most recently, Pindera and Freed [21] showed how this tech-

nique can be applied to axisymmetric, elastoplastic, boundary-value problems in composite

mechanics. The local/global stiffness matrix formulation allows one to easily incorporate any

number of concentric shells with arbitrary elastoplastic properties into the concentric cylinder

model, while reducing the number of equations required to ensure continuity of interfacial trac-

tions and displacements between the adjacent layers.

The presented model is subsequently employed to illustrate the effects of the morphology

of layered SiC fibers and multiple compliant layers at the fiber/matrix interface on the evolution

of thermal stresses in SiC/Ti 3 Al composites during fabrication cool-down. The use of multiple

interfacial layers has been suggested by Arnold, et al. [ 16] as a way of smoothing out the

material property mismatch between the fiber and the surrounding matrix phase in order to

optimize thermal stresses at the fiber/matrix interface. This extension of the work of Arnold and

co-workers' facilitates modeling of the interfacial region as a region with spatially variable pro-

perties in order to investigate the effect of property gradients on thermal stress fields.

ANALYTICAL MODEL

We consider a long, cylindrical assemblage consisting of an arbitrary number of concentric

cylinders or shells perfectly bonded to each other, Figure 2. Each of the cylindrical shells may be

either elastic or inelastic. The elastic shells may be isotropic, transversely isotropic, and radially

or circumferentially orthotropic. The inelastic shells are taken as initially isotropic. It is assumed

that all the material parameters governing the response of the elastic and inelastic layers may be

functions of temperature. Although the analytical formulation is sufficiently general to admit

time-dependent response of the individual layers, only time-independent plasticity will be con-

sidered here.

A distribution of displacements and stresses in the individual phases of the concentric com-

posite cylinder model is sought under the conditions of a spatially uniform temperature change

that varies with time. A solution of the outlined elastoplastic boundary-value problem is

obtained using the displacement formulation. In what follows, the total strain formulation of the

governing differential equations is employed within the framework of the so-called method of

successive elastic solutions outlined by Mendelson [22] for elastoplastic boundary-value prob-

lems.

In solving the outlined boundary-value problem, the following notation is adopted. The

inner solid core is denoted by a subscript or superscript 1 and the outermost cylindrical shell by

n. The inner radius of the kth shell is denoted by r k_ 1 and the outer radius by rk . The traction and
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displacement components at the inner and outer radii of the kth shell are assigned superscripts

"- " and "+", respectively.

For the prescribed axisymmetric loading, the longitudinal, tangential and radial displace-

ment components u, v and w, referred to the cylindrical coordinate system x—r-6 centered at the

origin of the concentric cylinder assemblage have the form,

u=u(x) =Eo x, v=0, w=w(r)	 (I)

where co is the uniform longitudinal strain for all layers. These displacement components yield

the following strain components in the cylindrical coordinate system,

du	 w(r)	 dw(r)

EXX = dx = 
F-0, E6e = r	 Err =	 (2)dr

with the shear strain components identically zero. Since the strain components are either con-

stant or functions of only the radial coordinate r, the stress components are, at most, functions of

r, and so the stress equilibrium equations in cylindrical coordinates reduce to the single equation,

d6rr + Grr — Goo — 0	 (3)

dr	 r

The governing differential equation for the radial displacement w(r) in each shell is

obtained by expressing the stress components 6,T and Gee in Equation (3) in terms of w(r) and its

gradient using stress-strain equations and strain-displacement relations given by Equation (2).

For problems in cylindrical coordinates, the stress-strain equations for an orthotropic material in

the presence of thermal loading and inelastic effects, and in the absence of shear strains, are

given by,

GXI C" C IO Cu E XX — E X — a,u(T — To)

Goo = C IO Coe Cer E ee — E eo — aooff — To) (4)

Grr C u CO, Crr Err — E n — arr (T - To)

In the above, F-,,, Eee, Err are total strains, E XX+ E ee, En are inelastic strains, and (x,,, (T — To),
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a0e(T — To), o6 (T — To) are thermal strains, with To denoting a reference temperature and T

denoting the current temperature.

By introducing Equation (4) into the stress equilibrium equation, Equation (3), and taking

advantage of Equation (2), the following differential equations for the distribution of the radial

displacement in the kth shell are obtained.

Transversely isotropic, elastic lavers ( C xe = Cu , Coo = Cn , No = an )

d 2W + 1 dw - w _p	
(5a)

	

ds-'	 r dr	 r2

Orthotropic, elastic layers

d 2	 1 dw _ 1 Coo _ 1 (Cea - CXr)	 (Cr; - CO

	

r2 + r dr	 r2 Crr 
w 

r	 Cn	
£o +	 oii(T - To)]	 (5b)

	

i=x,8,r	 C.

Isotropic, inelastic layers

	

d 2	 1 dw	 1	 1	 (Cri - COO 	 Cri in

	

+ —	 –	 W= — I 	 ell (r) +	 I	 ii (r)	 (5c)
drdI2	r dr	 r`	 r i=x, 6, r	 i=x, 9, r C

F-

where the distribution of the inelastic strains, ell (r), is assumed to be known at the beginning of

each thermal load increment.

The solution of the above equations is obtained subject to the boundary condition,

	

0, (rn) = 0	 (6)

the interfacial displacement and traction continuity conditions,

	

U k-1 (rk-I) = Uk(rk-1) +	 6rr I (rk-1) = Gk (rk-1)	 (7)

and the longitudinal equilibrium condition,
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J 6zzdA, = 0	 (g)

where A, is the cross-sectional area of the concentric cylinder assemblage.

Using standard techniques, solutions to the governing differential equations are obtained in

the following form,

Transversely isotropic, elastic layers

A,)
w(r) = A, r +

	

	 (9a)
r

Orthotropic, elastic layers

	

W(r) = A t r^' + A, r-"  + 
(Ck - CT") 

reo + 
I (Cri - Cei) 

a„ r(T-To) 	 (9b)
(Crr - Ce0)	 i=x.e.r (CTr - Coo)

where _ ( COO )tr
CT

Isotropic, inelastic lavers

w(r) - 
1 r	 (Cri + COO £ll (r ^ )r^^, + r 

J 

r	 (C; - Cei) £1n(r ) dr' +	
(90

2r rk-1i=x,e,r	 Cn	 2 rk-li=xAr	 C,	 r

2
C	 r	 Al

1 1 neu(rk-1 )r( k, t -1)+AIr+
i=x, 0, r Crt	 r

r

where rk-t <_ r <_ rk.

The above solutions contain unknown coefficients Ak and A2 for each layer, as well as the

unknown, uniform axial strain ee. For the solid core, the constant A 2 vanishes since the radial

displacement at the center has to vanish. These unknown coefficients are determined from the

boundary condition, interfacial traction and displacement continuity conditions, and the



longitudinal force equilibrium condition. Application of these conditions yields a system of

equations in the unknown Ai and A2 coefficients and the uniform longitudinal strain F- 0 , that is

solved iteratively when the inelastic strains are present. An iterative procedure is required

because the inelastic strains depend implicitly on the unknown coefficients A 1 and A2. One such

iterative procedure has been proposed by Mendelson [22] in the presence of plastic strains. This

procedure will be employed in the present analysis.

In order to automate the construction of this system of equations so that any arbitrarily lay-

ered configuration can easily be considered, we reformulate the problem in terms of the interfa-

cial radial displacements as the basic unknowns in place of the coefficients A i and A2 by using

the concept of a local stiffness matrix. The local stiffness matrix relates the interfacial tractions

at the inner and outer radii of the kth layer to the corresponding interfacial radial displacements,

and is obtained from the solutions to Equations (5a-c) (i.e. Equations (9a-c)) in conjunction with

the constititive equations and strain-displacement equations, Equations (4) and (2). To construct

the local stiffness matrix for the kth layer, we first express the coefficients Ak and A2 in terms

of the interfacial displacements wk(rk_1) and wk(rk) by evaluating the solutions for the radial

displacement component w(r) at the appropriate locations. These expressions are then used in the

equations for the radial stress component in the kth layer given in terms of the determined radial

displacement field. The final step entails an evaluation of the radial stress in the kth layer at the

inner and outer radii in order to generate the radial tractions at those locations.

The form of the local stiffness matrix equation for the kth layer in the state of generalized

plane strain and in the presence of thermal and inelastic effects is

—6- I k	 11 k12 Jk W	 k13 k	 fl k	 91 k

6n J — k21 k22 w+	+ k23 _ + f 	 (T — To) + 92
	

(10)
k

The thermal effects are represented by f j and f2 , which are functions of the thermal expansion

coefficients for the kth layer. The plastic effects are represented by g i and g2, which are given

in terms of the integrals of the plastic strain distribution in the given layer. The elements kit,

k23 of the local stiffness matrix are functions of the geometry and elastic material properties of

the kth layer (which may vary with temperature). These elements are given in the Appendix for

transversely isotropic and orthotropic, elastic layers, and isotropic, inelastic layers. We note that

the inelastic effects do not appear in the elements k id . This has certain advantages that will be

pointed out later.
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For the solid core, the coefficient A l) in Equation (9a-c) vanishes because the radial dis-

placement w - has to vanish, and so the relationship between the radial traction 6n (r 1 ) at the

outer radius of the core and the corresponding radial displacement simplifies to,

an+ =k2 7 wi +k21 3 EO+ f2'(T - To)+ g 2	 (11)

Imposition of continuity of displacements and tractions along the common interfaces,

Equation (7), together with the boundary condition on the radial stress at r n , Equation (6), and

the longitudinal equlibrium condition specified by Equation (8), gives rise to a system of equa-

tions in the unknown interfacial displacements. The continuity of interfacial stresses is

guaranteed by requiring that the sum of the tractions acting at the kth interface be zero, i.e.,

ax+ + ^x+ l- = 0 ,	 k = 1 ...... n-1	 (12)

whereas the continuity of interfacial displacements is directly enforced by requiring the common

interfacial displacement wk in the expressions for tractions given by Equation (10) to be,

Wk = W k = W k+1	 (13)

The system of equations is constructed by applying Equation (12) to each interface, starting with

the inner interface between the core and the first cylindrical shell, in conjunction with the com-

mon interfacial displacements defined by Equation (13). This procedure yields the following

equations,

jk 122 + k i 1 )w 1 + k 1 2 w, + (k 1 3 + k i 3 )EO = - (f2 + f i )(T-To) - (g 2 + 9 i )

k21 Wk-1 + (k 22 + k j j 1 )Wk + k 12 1 Wk+1 + (k23 + k 13 1 )EO = — (f2
+f 1 ) (T—To) — (g 2 +g l+1) (14)

k 21 Wn-1 + k'2wn + k^3 EO = - f,(T-To) - g 2

where n is the number of cylindrical shells including the core. The remaining equation necessary

for the solution of the system of equations for the unknown interfacial displacements wk and the

axial strain co is provided by the longitudinal equilibrium condition, Equation (8). This yields,
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n	 ti	 n

(022 + 011) W1 ..... + .. . ..(0 22 + 0 11 1 )Wk ..... + ..... on2Wn + Y_ Wk £0	 i2k(T—To) — I nk (15)
k=1	 k=1	 k=1

where 011, 022 , Yk, Qk and Ilk are also given in the Appendix.

The system of equations comprised of Equations (14) and (15) can be represented in the

matrix form shown below. We observe that the global stiffness matrix is constructed by first

superposing the local stiffness matrices along the main diagonal in an overlapping fashion, and

then adding a column and a row to account for the thermal effects and the longitudinal equili-

brium condition in the case of free thermal expansion/contraction. Under the conditions of plane

strain, F-0 vanishes and the nth+1 row and column are not added into the global stiffness matrix.

It is a simple matter to construct a computer algorithm for assembling the global stiffness matrix.

	

k,2 +k1 1 	kip	 0	 k23 +k 13 W 1	 f^ +f1	 g2 +gi

	

k21	 k2, +k1 1	 w)

	

0	 k31	 = —	 (T—To) —	 (16)

k2 2	k23	 wn	 f2	

X927
1	 2	 22 ^^k	

E-0	 ^,Qk	 j `k
022+011

The outlined reformulation of the elastoplastic boundary-value problem for an arbitrary

concentric cylinder assemblage using the local/global stiffness matrix approach has the follow-

ing advantages: automatic satisfaction of interfacial continuity conditions in a pointwise fashion;

reduction in the number of the boundary condition and continuity equations by nearly 50% for

large numbers of concentric cylinders; and automatic assembly of the global stiffness matrix,

facilitating the addition of concentric cylinders without additional effort. Furthermore, as the ele-

ments of the stiffness matrices for different types of layers have been provided in closed form,

the outlined thermal boundary-value problem does not have to be resolved each time a particular

concentric cylinder assemblage is considered. Different configurations are efficiently handled by

assembling the global stiffness matrix in an appropriate fashion using the provided local stiffness

matrices.

SOLUTION PROCEDURE

The system of equations given by Equation (16) is solved iteratively at each temperature

step for the specified loading after the manner suggested by Mendelson [22]. The iteration is
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performed on the plastic force vector that consists of the elements gl, 9 2
k and jnk. These are

expressed in terms of the integrals of the plastic strain distributions in the given layer that have

the form (see the Appendix),

rk	 (Cri + COO -. r r	 rk(	 (Cri — Coi) in r drr
J I	 ('	 £ll(r)rdr	 J	 E"(r)	 (17)

rk-Ii=x . 9.r 	Ir	 rk-Ii=x,e,r	
C-11
	 r

Since the elements of the global stiffness matrix at a given temperature are constant, only one

inversion of the matrix for each sequence of iterations is required. As the elements f i, fk and

I:Qk of the thermal force vector are constant at a given temperature, most of the computational

effort lies in evaluating the integrals in Equation (17) at each iteration. The algorithm for the

iterative procedure is given in the sequel.

For the given temperature increment, the plastic strain distribution in each layer is

expressed in terms of the distribution at the preceding temperature plus an increment that results

from the imposed temperature change.

P-P (r) ^ current = £ P (r) ^ previous + dEP (r)	 (18)

The plastic strain increment is derived from the von Mises yield condition which, in the presence

of temperature-dependent elastoplastic properties of the matrix phase, has the form

_p
F = 

2 
6;j

 6;j — 3 c^ It , T) = 0	 (19)

where 6 is the effective yield stress, which is a function of both the effective plastic strain E and

temperature. The plastic strain increment is thus,

dF- — 
aF 

d), = (Y' . &kP _
J

(^6iJ

where the proportionality constant 6, is obtained from the consistency condition for plastic load-

ing in the form

(20)
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2_a6
6iiDijkl(dckl — dekj) + (61jCij — 3 6 aT )dT

2	

(21)

9 6 a£ + aijDijk16k1

where dF-4,' are the thermal strain increments given by,

dell _ [aij (T) + aT (T — T0)] dT 	 (22)

aD i kl
Dijkl are the elastic stiffness elements, and C ij = aT a k l . In the present investigation, the elas-

toplastic stress-strain response of the matrix is taken to be bilinear so that the slope of the effec-

tive stress-plastic strain curve, a6 , is constant at a given temperature.
a-EP

The plastic strain distribution in each layer is determined by calculating the plastic strains

at twenty stations after updating the plastic strains at these locations using Equation (18). The

current values for the plastic strains at these stations are then used in determining the integrals

given in Equation (17), and thus the elements of the plastic force vector in Equation (16).

Updated values of the interfacial displacements are then obtained using Equation (16). With a

knowledge of the interfacial displacements and the axial strain F- 0 , the coefficients A i and A k in

each layer can be obtained, producing solutions for the radial displacement w k (r) from which

radial and tangential total and plastic strains, and the corresponding stresses, can be obtained.

These are then used to obtain new approximations for the plastic strain increments. The iterative

process is terminated when the differences between two successive sets of plastic strain incre-

ments are less than some prescribed value. The above procedure is described in detail by Men-

delson [22].

APPLICATIONS

As an application of the outlined method, we investigate residual stresses in a concentric

cylinder consisting of a SCS6 SiC fiber surrounded by a layer of titanium matrix that is sub-

jected to a temperature change of -1425 °F [16]. Two cases are considered, namely; a layered

fiber embedded in a homogeneous matrix, and a homogeneous fiber embedded in a matrix with a

layered interface. In both cases, the outer radius of the composite cylinder was normalized to

1.0, with the normalized fiber radius of 0.6320 producing a fiber volume fraction of 0.40. For the
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r
second case, the interfacial layer outer radius was 0.6952, resulting in an interfacial volume frac-

tion of 0.08.

The calculations were performed using temperature increments of AT = —2.5°F. Conver-

gence of plastic strain increments at the various radial locations typically did not require more

than ten iterations at each temperature increment. As an additional check, values of the effective

stress calculated from the effective stress-plastic strain curve at various radial locations were

compared with values of the effective stress based on the obtained stress components at these

locations. Typically, differences were a fraction of a percent. As a final check of the accuracy of

the analytical solution, axial, circumferential and radial stress profiles generated at several tem-

peratures during the fabrication cool-down of a homogeneous SIC fiber embedded in an elasto-

plastic matrix were compared with the corresponding results obtained by Arnold, et al. [ 16]

using a FE solution. Very good agreement was obtained [21].

Case I : Effect of Fiber Microstructure On Thermal Stresses.

As mentioned previously, SCS6 SiC fibers exhibit composite microstructures consisting of

a core surrounded by a number of cylindrical shells, with each region possessing generally dif-

ferent properties. In this work, the SCS6 SiC fiber is modelled using five regions with distinct

properties. The inner carbon core (Region I in Figure 1) is assumed to be isotropic, the pyrolytic

layer (Region II) circumferentially orthotropic, the silicon carbide regions (Regions III and IV)

radially orthotropic, and the outer carbon-rich coating (Region V) isotropic or circumferentially

orthotropic. The evolution of residual stresses is investigated for a total of nine cases in view of

the uncertainty associated with accurate determination of the material properties in the indivi-

dual layers. For the first six cases, a common set of material properties is used in Regions I

through IV, while one set of properties is used in the outer carbon-rich coating or Region V for

cases 1 through 3 and another set for cases 4 through 6. In cases 1 through 3 the outer carbon-

rich coating is taken to be isotropic, whereas in cases 4 through 6 it is assumed to be circum-

ferentially orthotropic with the same properties as Region II. The remaining three cases (cases 7

through 9) are based on material properties of a SCS6 SiC fiber used in an earlier investigation

[23] which are thought to be not as accurate as those employed for cases 1 through 6. Irrespec-

tive of the actual properties employed in the calculations, cases 1, 4 and 7 correspond to equal

expansion coefficients of the two SIC layers in the axial, radial and circumferential directions,

while for cases 2, 5 and 8, and cases 3, 6 and 9, the radial thermal expansion coefficient in the

SIC layers is 25% greater and smaller, respectively, than the thermal expansion coefficients in

the axial and circumferential directions.
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The temperature-independent material parameters for the five different regions of the SiC

fiber used in cases 1 through 6 are given in Table la, whereas the corresponding temperature-

dependent thermal expansion coefficients are given in Table lb. These properties are based on

data compiled by Lara-Curzio and Sternstein [24,25] and DiCarlo [26], and are thought to be the

best properties for the individual regions of a SCS6 SIC fiber available at the present time. The

temperature-dependent thermal expansion coefficients of the SiC regions (Regions III and IV) in

Table lb (cases 1 and 4) have been calculated using the empirical formula provided by Li and

Bradt [27] given in the form,

asic = 3.19x10-6 + 3.6x10- T - 1.68x10 -12 T 2 (°C-1)

The properties of the different regions of a SCS6 SIC fiber used for cases 7 through 9 are given

in Tables 2a and 2b. As mentioned earlier, these properties are not as accurate as those provided

in Tables la and lb, and are used here for parametric and illustrative purposes. In particular, we

point out that the two sets of properties given in Table 1 a,b and Table 2a,b, respectively, differ

significantly in the pyrolytic and outer coatings (Regions II and V). They are identical in the SIC

regions (Regions III and IV) and somewhat different in the carbon core (Region I).

The temperature-dependent material parameters of the titanium matrix used in the calcula-

tions are given in Table 3. Included in the table are the properties of the homogeneous SiC fiber

employed by Arnold, et al. [16,17] in investigating the effectiveness of a

compliant/compensating layer in reducing residual stresses in the matrix adjacent to the

fiber/matrix interface. The results obtained, taking into account the SCS6 SIC fiber's microstruc-

ture, are compared with the results generated assuming the fiber to be homogeneous.

The results for the axial, circumferential and radial stress distributions are presented in Fig-

ures 3a-c, 4a-c and 5a-c, respectively, for all the considered cases. The letter code a, b and c in

the above figures denotes cases 1 through 3, 4 through 6, and 7 through 9, for each of the three

stress profiles. The illustrated residual stress profiles indicate that the microstructure of the SiC

fiber has a substantial influence on the stress distribution in the individual layers of the fiber, as

suggested in the results obtained by previous investigators [9,28]. In particular, we note that in

contrast with the uniform, negative, axial stress observed in the homogeneous fiber, the axial

stress in the isotropic carbon core is positive for all the considered cases, Figure 3a-c. The rela-

tively high tensile stresses observed in the first six cases point to a potential failure of the carbon

core for a sufficiently large tensile deformation applied to the composite in the fiber d irection. In

fact, given that the Young's modulus of the carbon core is 6.0 Msi, Table la, and neglecting

stresses due to the Poisson's effect, an axial strain of 1% will generate an axial stress of 60 ksi in
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the core, that, together with the initial residual stress may be sufficient to fracture the core [29].

For the last three cases, on the other hand, the axial stress in the carbon core is quite low. For

cases 1 through 6, Figure 3a-b, the pyrolytic coating is either in a state of axial compression or

tension depending on the values of the thermal expansion coefficients in the SiC layers and the

outer coating, while the axial stress distribution in the slightly radially orthotropic SiC layers

depends on the thermal expansion coefficients in those layers. When the three coefficients are

equal, case 1 and 4, a nearly uniform distribution is observed. When the radial coefficient is

greater than the remaining two, case 2 and 5, the axial stress increases towards the core, whereas

a decrease is observed when the radial coefficient is smaller, case 3 and 6. The axial stress in the

outer coating is positive for cases 1 through 3 and negative for cases 4 through 6. For cases 7

through 9, Figure 3c, the pyrolytic coating is in a state of high axial compression regardless of

the values of the thermal expansion coefficients in the SiC layers, while the axial stress distribu-

tion in the slightly radially orthotropic SiC layers follows the same trends observed in cases 1

through 6. The axial stress in the outer carbon coating is positive for cases 7 through 9 and small

in magnitude in comparison with cases 1 through 6.

Similar trends are observed for the hoop stress distribution, Figure 4a-c. In this case how-

ever, the distribution of the hoop stress within the SIC layers for cases 1 through 6, Figure 4a-b,

is substantially more nonuniform in comparison with the corresponding axial stress cases (Figure

3a-b). The large tensile values of the hoop stress in the outer carbon coating observed for cases 1

through 3 in Figure 4a indicate a potential initiation site for radial microcracking. In fact, radial

microcracks in the outer carbon-rich coating have been reported by Brindley, et al. [3] and

MacKay, et al. [30]. On the other hand, if the properties of the outer coating are the same as

those of the pyrolytic layer with a large thermal expansion coefficient in the radial direction, a

desirable compressive hoop stress develops in the outer coating as observed in Figure 4b for

cases 4 through 6, thereby removing the driver for radial cracking in this coating. For cases 7

through 9 (Figure 4c), the variation of the hoop stress in the SiC layers with the thermal expan-

sion coefficient is also much greater than in the corresponding axial stress case (Figure 3c),

while in the outer carbon coating the hoop stress is tensile and relatively small.

The radial stress distributions shown in Figure 5a-b for cases 1 through 6 indicate that the

magnitude of the radial stress in the SiC layers directly adjacent to the outer carbon coating is

affected by the thermal expansion coefficient of the outer coating. In particular, the stress pro-

files are shifted up, producing smaller magnitudes of compressive radial stress in the outer SiC

layers when the outer coating has a high thermal expansion coefficient in the radial direction

(cases 4 through 6). The form of the stress distribution, however, remains similar in both sets of

cases, increasing monotonically with decreasing radial coordinate in the inner SiC region.
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Within each set of cases, the distribution of radial stresses in the SIC regions increases uniformly

(i.e., shifts up) with increasing thermal expansion coefficient in that region. Relatively large

differences are observed in the radial stress magnitudes in the SiC layers for the different values

of the radial thermal expansion coefficient. In the vicinity of the carbon core, the largest radial

stress is generated when the radial thermal expansion coefficient in the SIC regions is highest,

cases 2 and 5. The relatively large tensile stresses observed at the interfaces separating the inner

core from the pyrolytic coating, and the pyrolytic coating from the SiC regions, point to a poten-

tial debonding of these interfaces during either cool-down or upon tensile loading, given the

poor radial properties of the circumferentially orthotropic pyrolytic coating and the large

Poisson's ratio v,U . We note that if debonding were to take place between the carbon core and/or

pyrolytic coating and the surrounding material during cool-down or subsequent tensile loading,

the initially high residual axial stresses in the carbon core would relax, eliminating the possibil-

ity of failure in the core. In contrast with the first six cases, the radial stresses in the vicinity of

the carbon core for cases 7 through 9 are either quite low or compressive as observed in Figure

5c. The general form of the radial stress distributions throughout the various fiber regions for

these cases, however, is similar to the distributions observed in the preceding cases.

Perhaps the most important result gained from the data presented in Figures 3 through 5 is

the observation that the microstructure of the SIC fiber has little effect on the elastoplastic stress

distribution in the matrix phase for the range of the employed material parameters. From the

point of view of radial cracking susceptibility at the fiber/matrix interface, the circumferential

stress component bee plays the most important role. Figure 4a-c illustrates that the reduction in

the circumferential stress depends on the thermal expansion coefficient of both the SiC regions

and the outer carbon coating. Within each of the three sets of investigated cases, the biggest

reduction in the circumferential stress in the matrix phase is obtained when the radial thermal

expansion coefficient an in the SiC regions is 25% greater than the longitudinal and circum-

ferential thermal expansion coefficients, denoted by cases 2, 5 and 8 in the figures. This is

clearly consistent with the physics of the deformation in the presence of constraining layers, and

is further borne out by the corresponding reduction in the radial stress profile illustrated in Fig-

ure 5a-c. The biggest reduction in the hoop stress for all the cases occurs for case 5, Figure 4b,

when the radial thermal expansion coefficient of the outer carbon coating is very large in relation

to that of the matrix. In this case, the outer coating acts as a compensating layer, as suggested by

the results of Arnold, et al. [16,17], resulting in a further decrease of the matrix hoop stress.

Clearly, however, the reductions in bee of the matrix are quite modest for all the considered

cases. It appears that a substantially greater increase in either the radial thermal expansion coef-

ficient of the SIC layers (for cases 2, 5 and 8), or the thickness of the outer carbon coating (for
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cases 4 through 6), is required to produce a significant reduction of the circumferential stress in

the matrix phase at the fiber/matrix interface.

Case II : Effect of Interfacial Layer Morphology On Thermal Stresses.

The work of Arnold, et al. [ 16,17] indicates that the most important interface layer parame-

ters for reducing the matrix inplane stresses are the thermal expansion coefficient and the thick-

ness of the layer. The thermal expansion coefficient should be chosen such that «layer > cc matrix

and the thickness of the compliant layer should be as large as other considerations allow. For a

given thickness of the interfacial layer, the matrix hoop stress decreases with increasing thermal

expansion coefficient of the layer, suggesting that «layer should be as large as possible in relation

to amd`n" However, the reduction in the matrix hoop stress is accompanied by an increase in the

interfacial layer hoop stress itself. In fact, the interfacial layer hoop stress may exceed that in the

matrix phase above a certain value of «layer, potentially resulting in radial cracking in the inter-

facial layer itself. Elastic and inelastic properties of the interfacial layer appear to play a secon-

dary role as far as the matrix inplane stresses are concerned. Since the results of Arnold, et al.

[16,17] indicate that increasing the thermal expansion coefficient of the interfacial layer

decreases the inplane stresses in the matrix at the expense of larger hoop stresses in the interfa-

cial region, we ask whether grading the thermal expansion coefficient of the interfacial region

using multiple layers offers any advantages over the use of a single interfacial layer with regard

to optimizing hoop stresses in both the interfacial layer and the matrix phase. To answer this

question, we consider the cases of two and three interfacial layers with different thermal expan-

sion coefficients lying between two values, and compare the resulting stress distributions with

those generated in the presence of a single interfacial layer with the two extremal thermal expan-

sion coefficients.

The temperature-dependent material parameters of the fiber and matrix phases of the

SiCIT1 3 A1 composite used in the calculations are given in Table 3. The elastic and inelastic pro-

perties of the interfacial layers (excluding the Poisson's ratios) were taken to be one half of the

corresponding matrix properties at each temperature. This choice is motivated by the observation

of Arnold, et al. [ 16] that the elastic and inelastic properties of the interfacial layer should be as

small as possible relative to those of the matrix as regards minimization of overall residual stress

state. The thermal expansion coefficients of the interfacial layers were chosen in the following

manner. First, stress distributions for single interfacial layers having thermal expansion coeffi-

cients two and three times that of the matrix phase were generated independently. Those are

indicated by open and solid circles in the figures that follow. Next, stress distributions in the

presence of two interfacial layers were generated with each layer having thermal expansion
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coefficient two and three times that of the matrix phase. Finally, stress distributions were

obtained in the presence of three layers, with the individual layers having thermal expansion

coefficients of two, two and one half, and three times that of the matrix phase.

Figure 6 presents the hoop stress bee distributions in the fiber, interfacial layer(s) and the

matrix phase for the cases of zero, one, two and three interfacial layers. In the cases of multiple

interfacial layers, the thermal expansion coefficients were graded in a monotonically increasing

manner from the inner to the outer interfacial layer. Inverting this grading sequence reverses the

stress distibution in the interfacial region without significantly affecting the stress distribution in

the matrix phase. The results presented in the figure clearly indicate a reduction in the matrix

hoop stress in the presence of a single interfacial layer with an increasing thermal expansion

coefficient for the layer as discussed by Arnold, et al. [ 16]. It is seen that beyond a certain value

of the thermal expansion coefficient for the interfacial layer, however, a reduction in the matrix

hoop stress is accompanied by an increase in the interfacial layer hoop stress as also pointed out

by the above authors. The use of multiple interfacial layers, on the other hand, tends to modulate

to a certain extent the stresses in the interfacial region. It appears that a more advantageous hoop

stress distribution in the interfacial region can potentially be obtained by grading the thermal

expansion properties, albeit at the expense of an increase in the matrix hoop stress. The hoop

stress distribution in the matrix phase in the presence of two and three interfacial layers is

bounded by the stress distributions for the single interfacial layers. Virtually no difference in the

matrix hoop stress distribution is observed when two or three interfacial layers are present. It is

interesting to note that the hoop stress distribution in the matrix phase is not significantly dif-

ferent from the one obtained with two or three interfacial layers if a single interfacial layer with

the average value of the thermal expansion coefficient is used, i.e., thermal expansion coefficient

two and one half times that of the matrix phase. The hoop stress in the interfacial region, in this

case, is approximately the average of the hoop stress obtained with the two or three interfacial

layers. This suggests that in some situations a single interfacial layer may be sufficient to optim-

ize rsidual stresses, thus eliminating the additional cost of depositing multiple interfacial layers.

The corresponding results for the axial stress 6,t ,s distributions are illustrated in Figure 7.

For this component of stress, the presence of an interfacial layer results in an increase of the

matrix axial stress at the fiber/matrix interface and a decrease in the outer region. Multiple inter-

facial layers produce potentially more desirable stress distributions in the interfacial region only,

and without offering any advantage over the single interfacial layer with regard to the matrix

axial stress distribution. As in the preceding case, a single interfacial layer with the average ther-

mal expansion coefficient produces virtually the same axial stress in the matrix phase and an

average stress profile in the interfacial region compared to the multiple layers. Similar

18



conclusions can be drawn from the results for the radial stress distributions presented in Figure

8. Here however, the presence of an interfacial layer results in a decrease in the radial stress dis-

tribution throughout the entire region of the concentric composite cylinder. The lowest stress

profile is obtained for the single interfacial layer with the highest thermal expansion coefficient.

The two and three interfacial layers produce virtually identical stress distributions, which are

bounded by the distributions obtained for the single layer cases. Virtually the same distributions

are obtained for a single interfacial layer with the average thermal expansion coefficient both in

the matrix phase and the interfacial region compared to the multiple layers.

CONCLUSIONS

An efficient method has been outlined for the determination of thermoplastic response of

metal matrix composites based on the concentric cylinder geometry. The method is an extension

of the local/global stiffness matrix formulation for layered media that has previously been

applied to elastic problems. Closed-form expressions have been provided for the local stiffness

matrices of isotropic, transversely isotropic and orthotropic layers, in the presence of thermal

and inelastic effects. These expressions can be quickly programmed and a simple algorithm for

assembling the global stiffness matrix can be constructed for any arbitrarily layered concentric

cylinder assemblage. This eliminates the need to resolve the basic problem of a layered concen-

tric cylinder assemblage for the particular geometry under consideration.

The versatility of the method has been illustrated by investigating the effects of fiber and

interfacial layer morphologies on the thermally-induced, residual stresses in SiC/Ti 3 A1 compo-

sites. The results indicate that the layered microstructure of the SiC fiber has little effect on the

residual stress distributions in the matrix phase of a SIC/TI composite for the considered fiber

volume fraction and material parameters. The stress profiles in the individual layers of the SiC

fiber however, are substantially different than the corresponding profiles in a homogeneous SiC

fiber embedded in the same matrix material. The layered microstructure of the SIC fiber does not

produce substantially different effective properties of the "composite" fiber under axisymmetric

thermomechanical loading from those of a homogeneous SiC fiber. The matrix, therefore, sees

very little difference in the constraint provided by the homogeneous and layered SiC fiber during

thermal loading. Consequently, the stresses at the fiber/matrix interface are not substantially dif-

ferent. On the other hand, the resulting stress profiles in the individual layers of the SiC fiber do

depend to a large extent on the degree of orthotropy of the layers' thermal expansion coefficients

and elastic moduli. For example, the choice of material properties for the outer carbon coating

can significantly affect the radial (and longitudinal) stresses in that region, either accelerating or

delaying radial microcracking. Relatively large longitudinal, tensile stresses also may be present
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in the carbon core after cool-down, potentially leading to fracturing of the carbon core at

moderate axial deformations. Large tensile, radial stresses at the carbon core interface observed

for certain combinations of material properties of the SiC fiber regions point to a potential

debonding of the carbon core and/or the pyrolytic coating from the remaining fiber annulus dur-

ing cool-down or upon tensile loading. Further, a variation in the thermal expansion coefficient

in the SiC layers on the order of 25% is sufficient to produce a substantially different stress dis-

tribution in these layers for certain combinations of material properties. As a result, accurate

knowledge of the properties of the different regions in the SCS6 SiC fiber is thus indispensible

for both the modelling and material development efforts.

With regard to the use of multiple interfacial layers, the results indicate that, for the con-

sidered material system, grading the thermal expansion properties of the sublayers in the

fiber/matrix interfacial region, while keeping all the other properties constant, produces no

reduction of the inplane residual stress distribution in the matrix phase, as compared to the

inplane stresses induced by a single interfacial layer with the higher thermal expansion coeffi-

cient. In fact, introducing additional interfacial layers with a smaller thermal expansion coeffi-

cient than the thermal expansion coefficient of a single interfacial layer actually increases the

inplane residual stresses in the matrix phase over those generated in the presence of the single

interfacial layer. The use of multiple interfacial layers, however, has a potentially beneficial

effect on the stress distribution in the interfacial region itself.

Further, the work of Arnold et al. indicates that the influence of elastic and inelastic proper-

ties of the interfacial region is most dominant when attempting to reduce the stress distribution

in that interfacial region without significantly affecting the matrix stresses. This suggests that the

use of multiple interfacial layers may offer some advantages over single interfacial layers if both

the thermal expansion properties, together with the elastic and inelastic properties, are graded.

Grading in this case has the potential to reduce the generally high stresses in the interfacial

region when compensating layers are used, thus preventing premature failure. This issue will be

addressed in future investigations.
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APPENDIX

The local stiffness matrix elements of transversely isotropic and orthotropic, elastic cylindr-

ical shells, as well as isotropic, inelastic cylindrical shells for axisymmetric, generalized plane

strain problems in polar coordinates are given below. For transversely isotropic, elastic and iso-

tropic, inelastic shells with the r — 6 plane of isotropy we have,

Elastic contributions

k ll =
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Inelastic contributions
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For orthotropic, elastic shells we have,
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Table la. Temperature-independent properties of different regions comprising a SCS6 SiC fiber, cases 1-6.

Material properties Region I

Ref. [24]

Region II

Ref. [24]

Region III

Ref. [24,26]

Region IV

Ref. [24,26]

Region V

Ref. [24]

E,u (Msi) 6.0 25.4 60.0 60.0 11.6/25.4
Eee (Msi) 6.0 25.4 60.0 60.0 11.6/25.4

ER (Msi) 6.0 1.0 70.0 84.0 11.6/	 1.0

vxr 0.24 1.875 0.19 0.19 0.30/1.875

vze 0.24 0.036 0.25 0.25 0.30/0.036

vre 0.24 0.075 0.19 0.19 0.30/0.075

oc,u (x 10-6 in/in/ °F) 5.55 1.00 N/A N/A 4.89/1.00

oLeq (x 10-6 in/in/ °F) 5.55 1.00 N/A N/A 4.89/1.00

oc,r (x 10-6 in/in/ °F) 5.55 15.55 N/A N/A 4.89/15.55

Normalized outer radius 0.2232 0.2512 0.4698 0.9580 1.0000

Table lb. Temperature-dependent thermal expansion coefficients of Regions III and IV of a SCS6 SiC fiber.

o;,T (x 10--6 in/in/ °F)	 75 O F	 392 OF	 797 OF	 1112 O F	 1202 ° F	 1500 OF

Case 1 & 4 : oc, = cc,, = NE) Ref. [27] 1.82 2.13 2.50 2.77 2.84 3.03

Case 2 & 5 : an = 1.25oc U = 1.25N 9 2.28 2.66 3.13 3.46 3.55 3.79

Case 3 & 6 : an = 0.75a,u = 0.75o.eq 1.37 1.60 1.88 2.08 2.13 2.27
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Table 2a. Temperature-independent properties of different regions of a SCS6 SiC fiber, cases 7-9.

Material properties Region I

Ref. [23]

Region II

Ref. [23]

Region III

Ref. [23]

Region IV

Ref. [23]

Region V

Ref. [23]

E" (Msi) 4.0 32.0 60.0 60.0 4.0

Egg (Msi) 4.0 32.0 60.0 60.0 4.0

E,T (Msi) 4.0 4.0 70.0 84.0 4.0

vz7 0.20 0.25 0.19 0.19 0.20

vze 0.20 0.20 0.25 0.25 0.20

v,o 0.20 0.25 0.19 0.19 0.20

ocx, (x 10^ in/in/ °F) 3.10 0.15 N/A N/A 3.10

ode (x 104 in/in/ °F) 3.10 0.15 N/A N/A 3.10

oc, (x 10^ in/in/ °F) 3.10 3.10 N/A N/A 3.10

Normalized outer radius 0.2232 0.2512 0.4698 0.9580 1.0000

Table 2b. Temperature-dependent thermal expansion coefficients of Regions III and IV of a SCS6 SiC fiber.

oc,r (x 10-6 in/in/ °F)	 75 OF	 392 OF	 797 O F	 1112 OF	 1202 ° F	 1500 OF

Case 7 : cc, = o:,,, = otee Ref. [23] 1.96 2.01 2.15 2.33 2.38 2.50

Case 8 : cc, = 1.25oc,u = 1.25NO 2.45 2.51 2.69 2.91 2.97 3.12

Case 9 : oc, r = 0.75oc,, = 0.75NO 1.47 1.51 1.61 1.75 1.79 1.88
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Table 3. Material properties of homogeneous SiC fiber and titanium matrix (Reference [ 16]).

Material properties 75 O F 392 O F 797 O F 1112 OF 1202 OF 1500 OF

Homogeneous SiC fiber

a (x 10-6 in/in/ °F) 1.96 2.01 2.15 2.33 2.38 2.50

Young's modulus (Msi) 58.0 58.0 58.0 58.0 58.0 58.0

Poisson's ratio 0.25 0.25 0.25 0.25 0.25 0.25

i-24A1- I 1 Nb matrix

a (x 10-6 in/in/ °F) 5.0 5.2 5.7 5.85 5.9 6.15

Young's modulus (Msi) 16.0 14.5 11.0 12.5 9.89 6.2

Poisson's ratio 0.26 026 0.26 0.26 0.26 0.26

Yield stress (ksi) 53.89 59.0 53.7 42.2 39.1 24.0

Hardening slope (Msi) 3.333 0.441 0.322 0.187 0.097 0.0

Figure 11-Microstructure  of a SiC fiber (courtesy of Lerch et al., Refer-
ence [13]).
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29



100

70

40

10

-20

6XX (ksi)
-50

-80

-110

-140

-170

-200

I II	 III & IV	 V	 Matrix

100

70

40

10

-20
ax, (ksi)

-50

-80

-110

-140

-170

-200
0.0 0.2	 0.4	 0.6	 0.8	 1.0

Radial distance

(a) Cases 1-3.

I II	 III & N	 V	 Matrix

0.0	 0.2	 0.4	 0.6	 0.8	 1.0

Radial distance

(b) Cases 4-6.

Figure 3.—The effect of fiber morphology on the axial stress in a
concentric cylinder due to AT = -1425 °F.
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Figure 4.—The effect of fiber morphology on the hoop stress in a
concentric cylinder due to AT = -1425 °F.
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Figure 5.—The effect of fiber morphology on the radial stress in a
concentric cylinder due to AT = -1425 °F.
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